

Journal of Organometallic Chemistry 527 (1997) 117-124

Base catalysed hydrogenation of methylbromooligosilanes with trialkylstannanes, identification of the first methylbromohydrogenoligosilanes

U. Herzog, G. Roewer *

Institute for Inorganic Chemistry, Freiberg University of Mining and Technology, Leipziger Str. 29, D-09596 Freiberg, Germany

Received 26 April 1996

Abstract

The Lewis base catalysed hydrogenation of methylchlorooligsilanes with trialkylstannanes can also be applied to the hydrogenation of methylbromooligosilanes. In this way methylbromohydrogenoligosilanes were prepared for the first time. Methylbromotrisilanes with an > SiBrMe middle group (e.g. SiBrMe₂-SiBrMe₂-SiBrMe₂) are hydrogenated first at this silicon atom under formation of an > SiHMe group (e.g. SiBrMe₂-SiBrMe₂). Brominated silanes containing a quarternary Si(Si)₄ unit (e.g. Si(SiBrMe₂)₄) do not react with trialkylstannanes.

Keywords: Silane; Hydrogenation; Stannanes; Nuclear magnetic resonance; Oligosilanes

1. Introduction

Oligosilanes containing methyl, bromine and hydrogen substituents simultaneously are unknown until now. The hydrogenation of methylbromooligosilanes with $LiAlH_4$ in etheral solvents leads to the formation of the completely hydrogenated methylhydrogenoligosilanes only.

Recently, we have investigated the partial hydrogenation of SiCl₄, methylchloromono- and -oligosilanes (Si₂-Si₆) by trialkylstannanes in the presence of a Lewis base catalyst [1-4]. We were able to show that the hydrogenation by trialkylstannanes takes place at the silicon atom with the highest acceptor strength first. The acceptor strength increases with the number of silyl and chlorine substituents, e.g. in the order:

 $SiCl_2Me-SiClMe-SiCl_2Me > SiCl_2Me-SiCl_2Me >$ $SiClMe_2-SiClMe_2 > SiCl_3Me > SiCl_2Me_2$

This series was confirmed by our MO calculations (see Table 1) and can also be concluded from the stability of 2.2' bipy adducts of mono-, di- and trisilanes [6].

The first step of the overall reaction is the attack of the Lewis base catalyst at the silicon atom, forming a

0022-328X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. PII \$0022-328X(96)06552-7

hypervalent silicon atom and stretching the silicon halogen bond. In a second step, this species reacts with the stannane to give hydrogenated silane and trialkylhalostannane (X = Cl, Br):

The obtained product spectrum of silanes can be influenced by a variation of both the stannane and the Lewis base used, e.g.:

^{*} Corresponding author.

Compound	LUMO energy (eV)		
SiC1, Me-SiC1Me-SiC1, Me	2.25 *		
SiCl ₂ Me-SiCl ₂ Me	3.01		
SiCl ₂ Me-SiCiMe ₂	3.28		
SiClMe ₂ -SiClMe ₂	3.75		
SiClMe ₂ -SiMe ₃	4.28		
SiCl ₁ Me	4.47		

 Table 1

 LUMO energies of methylchlctr-silanes (STO 3-21 G^(*)) [5]

* The LUMO is mainly localized at the middle silicon atom.

Addition of N-methylimidazole leads immediately to a disproportionation of the disilane [7].

2. Results and discussion

The hydrogenation of the disilanes $SiBrMe_2-SiMe_3$ (1), $SiBrMe_2-SiBrMe_2$ (2), $SiBr_2Me-SiBr_2Me$ (3), trisilanes $SiBrMe_2-SiMe_2-SiBrMe_2$ (4), $SiBrMe_2-SiBrMe-SiBrMe_2$ (5), isotetrasilanes $SiMe(SiBrMe_2)_i$ -($SiMe_3)_{3-i}$, i = 1, 2, 3 (6a, 6b, 6c), $SiMe(SiBr_2Me)_3$ (7) and neopentasilanes $Si(SiBrMe_2)_i(SiMe_3)_{4-i}$, i = 1, 2, 3, 4, (8a, 8b, 8c, 8d) was investigated.

The methylbromooligosilanes 1 [8], 2 [9], 3 [10], 4, 5 [11] and 6c [12], were already known. The prepared products were characterized by means of ²⁹Si, ¹H NMR and GC MS. The identification and quantification of the formed hydrogenation products were carried out by means of ²⁹Si and ¹H NMR spectroscopy. The NMR data are summarized in Table 2(a)=(c).

The trends of the 29 Si chemical shifts of the tertiary as well as the quarternary silicon atoms are demonstrated in Figs. 1-3.

Fig. 1. ²⁹Si NMR chemical shift (ppm) of the tertiary SiMe group in the compounds SiMe(SiHMe₂)_x(SiBrMe₂)_y(SiMe₃)_{3-x-y}.

Fig. 2. ²⁹Si NMR chemical shift (ppm) of the tertiary SiMe group in the compounds SiMe(SiH₂Me)_x(SiHBrMe)_y(SiBr₂Me)_{3-x-y}.

2.1. Hydrogenation of $SiBrMe_2SiMe_3$ (1) and $SiBrMe_2$ -SiBrMe₂ (2)

Reaction of 1 with Bu_3SnH in a 1:1 molar ratio led to pure SiHMe₂-SiMe₃, whereas hydrogenation of 2 in a 1:1 molar ratio resulted in a mixture containing 75 mol% SiHMe₂-SiBrMe₂ besides 2 and SiHMe₂-SiHMe₂. A similar result was achieved by using Me₃SnH instead of Bu₃SnH (68 mol% SiHMe₂-SiBrMe₂).

2.2. Hydrogenation of SiBr₂ Me-SiBr₂ Me (3)

The hydrogenation of 3 was carried out with two molar ratios $3:Bu_3SnH$. Table 3 shows the relative amounts of the hydrogenated disilanes after condensation into a trap.

Compared with SiCl₂Me-SiCl₂Me (14), the formation of the asymmetrically double hydrogenated product SiH₂Me-SiX₂Me is not so much favored. Whereas the hydrogenation of 14 with Bu₃SnH (1:2 molar ratio) in the presence of Ph₃P yielded only SiH₂Me-SiX₂Me

Fig. 3. ²⁹Si NMR chemical shift (ppm) of the quarternary silicon atom in the compounds $Si(SiXMe_2)_x(SiMe_3)_{4-x}$ with X = Br, Cl [15] and H.

(60-70%) besides 14 and $SiH_2Me-SiH_2Me$ [2], 3 yielded all possible hydrogenated products SiY₂Me- SiY_2 Me (Y = H, Br).

A further difference between 3 and 14 could be obtained in the behavior towards N-methylimidazole: whereas 14 immediately disproportionates into SiCl₃Me and higher oligosilanes, no reaction was observed with 3 at room temperature.

Table 2

Si^A Me(Si^B HMe₂)(Si^C Me₃)₂

Si^A Me(Si^B BrMe₂)₂(Si^C Me₃)

Si^A Me(Si^B HMe₂)(Si^C BrMe₂)

 $(Si^{D}Me_{3})$

A:

B:

C:

A:

B:

C:

A: B:

C:

D:

- 34.80

- 12.28

- 77.90

-12.10

- 82.67

24.09

- 35.29

-12.23

22.28/64.5

0.740

0.256

NMR data (chemical shifts in ppm and coupling constants in Hz)

2.3. Hydrogenation of SiMe₂(SiBrMe₂)₂ (4) and $SiBrMe(SiBrMe_2)_2$ (5)

119

In accordance with the hydrogenation of $SiMe_2(SiClMe_2)_2$, the reaction of 4 with $Me_3SnH(1:1)$ yields the monohydrogenated product SiHMe2-SiMe₂-SiBrMe₂ in about 60% yield besides 4 and SiMe₂(SiHMe₂)₂.

(a) Methylbromohydrogendi- and -tri	silanes			
Compound		$\delta_{\rm Si}/I_{\rm SiSi}$	δ _H SiMe/ ³ J _{HH}	δ _H SiH/ ¹ J _{SiH}
Si ^A BrMe ₂ -Si ^B Me ₃	A:	17.97/92.2	0.482	
	B :	17.71	0.110	
Si ^A HMe ₂ -Si ^B Me ₂	A :	- 39.10/84.6 [13]	0.17/4.7	3.78/-173
j	B :	- 18.90	0.16	
SiBrMe ₂ -SiBrMe ₂		10.47	0.539	
Si ^A HMe ₂ -Si ^B BrMe ₂	A:	- 38.00	0.135/4.45	3.90/-187
	B :	17.74	0.521	
SiHMe ₂ -SiHMe ₂		- 39.02/82.6 [14]	0.15/4.7	3.90/-172
SiBr, Me-SiBr, Me		2.84	0.931	
Si ^A HBrMe-Si ^B Br, Me	A :	-21.04		
	B:	18.20		
Si ^A H, Me-Si ^B Br, Me	A:	- 57.52	0.08/4.74	3.80
	B :	19.54		
SiHBrMe-SiHBrMe		-15.40 and -16.00		
Si ^A H ₂ Me-Si ^B HBrMe	A:	- 64.37/77.0	0.081/4.86	3.72
	B:	- 9.61	0.522/4.14	4.59
SiH ₂ Me-SiH ₂ Me		67.74	0.22 /5.1	$\frac{3.57}{^2}J_{\text{SiH}}$: 7.3/ $^3J_{\text{SiH}}$: 3.6
ein Ma (Si ^B BrMa.).	A٠	- 42.60/79	0.216	
a merca princing	B.	19.62	0.614	
SiA HMa _Si ^B Ma _Si ^C BrMa	A.	- 37.51	0.168/4.52	3.904
a time and me and a prince	B:	44.69	0.181	
	C:	21.45	0.582	
SiAMe (Si ^D EMe.).	A:	-47.52/72	0.158	
al mestal times y	B:	- 36.72	0.153/4.58	3.92/-174
CiA BeMalCill BrMa. 1.	A	10.90/84	0.790	
ar brinktar brinks??	B:	12.17	0.738, 0.753	
CiA HMa(Ci ^B BrMa.).	A:	- 66.03	0.277/5.05	3.672
of numeror process	B:	18.61	0.712	
CIALENA CIBLINA SIC BEMA	A ·	- 37.62		
21 HIM6 ¹ =21 HIMC=21 DIVIC ¹	<u>ц</u> .	- 69.44		
	C.	20.75		
C:ALINA(C:BLIMA)	С. А·	- 73.48/70	0.2	3.29/-164
51 MWC(51 MWC ₂ /2	B:	- 37.29	0.147/4.47	3.93/-174
(b) Methylbromohydrogenisotetrasil	anes			
Compound		$\delta_{\rm Si}/J_{\rm SiSi}$	δ _H SiMe/ ³ J _{HH}	δ _H SiH/ 'J _{SiH}
Si ^A Me(Si ^B BrMe, XSi ^C Me,),	A:	- 82.42		
e. mere ennerine	B:	24.57	0.680	
	C:	- 12.46	0.197	
SiA Marsi ^B HMA, YSi ^C MA,).	A:	- 88.24		

Table 2 (continued)

Compound		$\delta_{\rm Si}/J_{\rm SiSi}$	δ _H SiMe/ ³ J _{HH}	δ _H SiH/ ¹ J _{SiH}	
Si ^A Me(Si ^B HMe ₂) ₂ (Si ^C Me ₂)	A:	- 88.38			
	B :	- 34.91/61			
	C :	- 12.16			
Si ^A Me(Si ^B BrMe ₂) ₃	A :	-73.33/68	0.355		
2.3	B :	20.40	0.804		
$Si^{A}Me(Si^{B}HMe_{2})(Si^{C}BrMe_{2})_{2}$	A :	- 78.10			
	B :	22.28			
	C:	- 35.46			
$Si^{A}Me(Si^{B}HMe_{2})_{2}(Si^{C}BrMe_{2})$	A :	- 82.92			
••	B :	23.60			
	C:	- 35.29			
$Si^{A}Me(Si^{B}HMe_{2})_{3}$	A :	- 88.56/62	0.17		
	B :	- 34.8	0.19/4.5	4.05	
$Si^{A}Me(Si^{B}Br_{2}Me)_{3}$	A :	- 59.15/79.5	0.570		
	B :	14.70	1.393		
$Si^{A}Me(Si^{B}HBrMe)(Si^{C}Br_{2}Me)_{2}$	A :	-63.12	0.522		
	B :	-9.35	0.963/3.94	4.854	
	C:	17.15	1.354		
$Si^{A}Me(Si^{B}H_{2}Me)(Si^{C}Br_{2}Me)_{2}$	A :	- 62.90	0.465		
	B :	-63.71	0.383/4.84	3.800/-197	
	C:	19.94/74.8	1.301		
Si^Me(Si ^B H ₂ Me)(Si ^C HBrMe)	A :	- 70.74	0.417		
$(Si^{D}Br_{2}Me)_{2}$	B:	- 63.92	0.343	3.77	
	C:	- 6.04	0.869/3.72	4.792	
	D:	22.44	1.260		
$Si^{A}Me(Si^{B}H_{2}Me)_{2}(Si^{C}Br_{2}Me)$	A;	- 74.06	0.375		
	B:	- 63.03/65	0.325/4.88	3.740/ - 191	
a A LA (A BAR LA) (A CAR LA)	C:	25.44	1.217		
Si ^A Me(Si ^B H ₂ Me) ₂ (Si ^C HBrMe)	A:	- 85.3			
	B:	- 63.0			
a AAR CORP. AL.	C:	- 2.31 Al 64 (2) A	A 40 A		
SI" Me(SI" H 2 Mc)3	A:	-91.54/01.8	0.284	3 90 / 10/	
	D;	- 02.47	0.228/4.80	3.707 - 190	
(c) Methylbromo- and methylhydrogeni	neopentasilanes				
Compound		5a, / 1Je.c.	8., SiMe / 1	8., SiH	iisnigiesi
RIA(RIBBOMA, YEICMA.)	۸.	- 137 67	and the second	and a second	
ai (ai dimežvai mežvž	R,	- 127.02 74.95	A 7A1		
	C.	a 4 72 	0.701		
SIA(SIBROMA,). (SIC MA.).	۵, ۸		0.240		
at (at attice 1, 1 (at the 1, 1	B,	23 50	0 735		
	Č	- 8 90	0.288		
Si ^A (Si ^B BrMe ₂),(Si ^C Me ₂)	Δ:	- 115 22	0.200		
a (a mulli) (a me)	B:	21.85	0 775		
	Ĉ		0.378		
Si ^A (Si ^B BrMe ₂).	Δ.	- 110 57/57	0.260		
a (a suns),4	R.	20.02	0 809		
Si ^A (Si ^B HMe,YSi ^C Me,),	A	- 136 78	0.007		
er ter innegster integsg	R:	- 33 40	0 280 / <i>4</i> 4	4 190	
	Č.	-956	0.232	4.177	
Si ^A (Si ^B HMe ₂) ₂ (Si ^C Me ₂) ₂	A:	- 137 88	. σ. αυτέ∕αυ		
	B:	- 33 44	0 280 / 4 4	4 103	
	C:	- 9.20	0.232		
Si ^A (Si ^B HMe,),(Si ^C Me.)	A:	- 139.00	171 1917 12 171 1917 12		
	B:	- 33.40	0.278 /4 4	4 187	
	C:	-8.73	0 230		
Si ^A (Si ^B HMe ₂)	A:	- 140 07	9168 V		
	R	- 33 34	0 276 /A A	A 175	
	\$Ø1	せいいせい	0.610/ 4.4		

Hydrogenation of o while Dagonar in the province of this metric						
Molar ratio	Amount of					
3:Bu ₃ SnH	SiBr ₂ Me- SiBr ₂ Me	SiHBrMe SiBr ₂ Me	SiH 2 Me- SiBr2 Me	SiHBrMe- SiHBrMe	SiH ₂ Me- SiHBrMe	SiH ₂ Me- SiH ₂ Me
1:2	15%	12%	19%	9%	34%	11%
1:3		6%	7%		18%	69 %

Table 3 Hydrogenation of 3 with Bu_3SnH in the presence of Ph_3MePI

Starting with 5 the monohydrogenated product $SiHMe(SiBrMe_2)_2$ can be obtained in 80% yield besides some unreacted 5 and the two-fold hydrogenated compound $SiHMe_2-SiHMe-SiBrMe_2$. As was shown earlier for $SiCIMe(SiCIMe_2)_2$ [3], no hydrogenation products like $SiHMe_2-SiBrMe-SiBrMe_2$ (first attack at a terminal silicon atom) were found.

Hydrogenation of 5 with Me₃SnH in a molar ratio of 1:2 yields about 60% SiHMe₂-SiHMe-SiBrMe₂ besides SiHMe(SiBrMe₂)₂ and SiHMe(SiHMe₂)₂.

2.4. Hydrogenation of SiMe(SiBrMe₂)_i(SiMe₃)_{3-i}, i = 1, 2, 3 (6a-c)

Starting from pure SiMe(SiBrMe₂)₃ (6c) the hydrogenation with Me₃SnH in molar ratios 1:1 and 1:2 gave mixtures of SiMe(SiHMe₂)_x(SiBrMe₂)_{3-x} (x = 0 to 3) containing SiMe(SiHMe₂)(SiBrMe₂)₂ and SiMe-(SiHMe₂)₂(SiBrMe₂) respectively as main product (60– 70%).

Hydrogenation of a mixture of 58% **6b** besides 28% **6a** and 14% **6c** with Me₃SnH in a molar ratio **6a**c:stannane of 1:1 has shown that **6c** was hydrogenated most easily. 70% of the initial **6c** was converted into SiMe(SiHMe₂)₂(SiBrMe₂) and 30% into SiMe-(SiHMe₂)₃. **6b** was hydrogenated to SiMe(SiHMe₂)-(SiBrMe₂)(SiMe₃) (75%) and SiMe(SiHMe₂)₂(SiMe₃) (15%). 5% remained as **6b**. Only 20% of the total content of **6a** was hydrogenated to SiMe(SiHMe₂)-(SiMe₃)₂, 80% was recovered.

In summary, the product mixture contained approximately 75% isotetrasilanes bearing one bromine atom, 3% bearing two bromine atoms and 22% isotetrasilanes without any bromine atom.

2.5. Hydrogenation of $SiMe(SiBr_2Me)_3$ (7)

The hydrogenation of 7 was carried out with several molar ratios $7:Me_3SnH$. Table 4 shows the results in the cases of molar ratios 1:2 and 1:4.

In comparison to the hydrogenation of SiMe(SiCl₂-Me)₃ with Me₃SnH in the presence of Ph₃MePI [3], the amount of silanes containing SiHXMe groups is much less. No products bearing two or three SiHBrMe groups could be detected. As Table 4 indicates, the compounds SiMe(SiH₂Me)(SiBr₂Me)₂ and SiMe(SiH₂Me)₂(SiBr₂-Me) respectively can be prepared in approximately 60% yield.

2.6. Hydrogenation of $Si(SiBrMe_2)_i(SiMe_3)_{4-i}$, i = 1, 2, 3, 4 (8a-d)

The brominated neopentasilanes 8a-d as well as the chlorinated compounds Si(SiClMe₂)_i(SiMe₃)_{4-i} did not react with stannanes. Reaction with LiAlH₄ in Et₂O led to the completely hydrogenated species Si(SiHMe₂)_i-(SiMe₃)_{4-i}. Probably steric hindrance prevents the attack of the Lewis base at the silicon atom of the SiXMe₂ group directly attached to the quarternary silicon atom. This conclusion was also confirmed by the selective single hydrogenation of the hexasilane (SiClMe₂)₃Si-SiClMe-SiClMe₂ to (SiClMe₂)₃Si-SiClMe-SiClMe₂ with Me₃SnH in the presence of Ph₃MePI [15].

3. Experimental details

All preparations were carried out under an argon atmosphere using standard Schlenk techniques.

Table 4 Hydrogenation of 7 with Bu_3SnH in the presence of Ph_3MePl

Molar ratio	Amount of						and a state of the
7:Me ₃ SnH	SiMe(Si Br ₂ Me) ₃	SiMe(Si HBrMe) (SiBr ₂ Me) ₂	SiMe(Si H ₂ Me) (SiBr ₂ Me) ₂	SiMe(Si H ₂ Me)(SiHBrMc) (SiBr ₂ Me)	SiMe(Si H ₂ Me) ₂ (SiBr ₂ Me)	SiMe(Si H ₂ Me) ₂ (SiHBrMe)	SiMe(Si H ₂ Mc) ₃
1:2 1:4	10%	12%	57% 13%	11% 14%	9% 61%	5%	7%
			_		ومعمدات متداعة واجاره فأواد وتجاري والمعالية فلتجهد المالية والمتشادين مجاولة التكو		

The NMR data were recorded with a Bruker MSL 300 spectrometer (¹H: 300.13 MHz, ²⁹Si: 59.627 MHz). Samples were dissolved in toluene and filled into 7 mm glass ampoules, which could be introduced into 10 mm NMR tubes charged with CDCl₃ as external lock substance. All chemical shift data are relative to internal TMS. ²⁹Si chemical shifts of SiBrMe₂ and SiBr₂Me groups can vary by about ± 0.5 ppm in different solutions of the same compound. The given values, however, are related to the differences in δ_{Si} of brominated silyl groups of different compounds in the same spectrum.

The amounts of hydrogenation products were determined from the intensities of the ²⁹Si NMR signals.

Mass spectra were obtained with a HP 5971 (ionization energy 70 eV).

3.1. Preparation of the brominated oligosilanes

3.1.1. Bromopentamethyldisilane (1) and 1.2-dibromotetramethyldisilane (2)

1 and 2 were prepared by bromination of Si_2Me_6 with CH₃COBr and AlBr₃ according to Ref. [16].

2. GC MS m/e (intensity of the major peak in the isotopic pattern due to $^{79/81}$ Br, $^{28/29/30}$ Si and $^{12/13}$ C): 276 (M⁺, 19), 261 (Si₂Me₃Br₂, 3), 197 (Si₂Me₄Br, 7), 139 (SiMe₃Br, 100), 109 (20), 73 (SiMe₃, 80), 58 (SiMe₂, 52).

3.1.2. 1.1.2.2-Tetrabromodimethyldisilane (3)

5 g (34 mmol) Si₂Me₆ was heated with 17 g (137 mmol) CH₃COBr and 37 g (137 mmol) AlBr₃ to 120 °C for 3 h under stirring. After cooling to room temperature, 50 ml hexane was added. The upper phase was separated and fractionated to give 10g (25 mmol) colorless crystalline needles of 3 (m.p. 96.5 °C [10]). The product is extremely air sensitive and turned dark brown within some minutes when the tube was opened.

3.1.3. 1.3 Dibromohexamethyltrisilane (4)

A three-necked flask equipped with a dropping funnel, stirrer and reflux condensor was charged with 13 g (50 mmol) AlBr₃ and a solution of 4 g (20 mmol) Si₃Me₈ in dried n-hexane. Under stirring, 5.5 g (45 mmol) CH₃COBr diluted in 10 ml hexane was added dropwise. After stirring overnight the upper phase containing hexane. 4 and traces of AlBr₃ was separated from the yellow-brown high viscous residue. After adding 0.1 ml acetone the aluminiumbromide precipitated as acetone complex. The filtered solution was fractionated to give 4 g (12 mmol) 4 (b.p. $\$5\degreeC/0.6$ kPa).

GC MS: 334 (M⁺, 0.5), 319 (Si₃Me₅Br₂, 1), 255 (Si₃Me₆Br, 1.5), 197 (Si₂Me₄Br, 45), 139 (SiMe₂Br, 9), 131 (Si₂Me₅, 6), 116 (Si₂Me₄, 33), 73 (SiMe₃, 100).

3.1.4. 1.2.3-Tribromopentamethyltrisilane (5)

(a) 2-Phenylheptamethyltrisilane. A three-necked flask equipped with a dropping funnel, stirrer and reflux condensor was charged with a liquid alloy of 42 g (1.07 mol) potassium and 6 g (0.26 mol) sodium. A mixture of 40 g (0.21 mol) PhMeSiCl₂ and 200 g (1.84 mol) Me₃SiCl was added dropwise under vigorous stirring. After complete addition and further stirring for 2 h the silanes were filtered from the blue mixture of KCl, NaCl and residual sodium potassium alloy. The residue was washed twice with dried hexane and the combined filtrates were fractionated to give 15 g (0.10 mol) Si₂Me₆ (b.p. 112-113 °C), 15 g (0.056 mol) SiPhMe(SiMe₃)₂ (9) (b.p. 80 °C/6Pa) and 12.5 g residue of (SiPhMe-SiMe₃)₂ (10) with a small amount of SiMe₃-SiPhMe-SiClPhMe (11).

9. GC MS: 266 (M⁺, 34), 251 (Si₃Me₆Ph, 12), 193 (Si₂Me₄Ph, 100), 178 (Si₂Me₃Ph, 17), 163 (Si₂Me₂Ph, 18), 135 (SiMe₂Ph, 78), 116 (Si₂Me₄, 22), 105 (SiPh, 12), 73 (SiMe₃, 54). ²⁹Si NMR: -15.79 ppm (SiMe₃), -46.45 ppm (SiPhMe).

10. GC MS: (two signals with the same MS due to the two diastereotops) 386 (M⁺, 22), 371 (Si₄Me₇Ph₂, 5), 313 (Si₃Me₅Ph₂, 14), 236 (Si₃Me₅Ph, 84), 221 (Si₃Me₄Ph, 17), 193 (Si₂Me₄Ph, 70), 135 (SiMe₂Ph, 100), 105 (SiPh, 16), 73 (SiMe₃, 59). ²⁹Si NMR: -14.44/-14.61 ppm (SiMe₃), -43.87 ppm (SiPhMe). 11. GC MS: 348 (M⁺, 9), 333 (Si₃Me₄Ph₂Cl, 8), 240 (Si₂Me₂Ph₂, 93), 225 (Si₂MePh₂, 39), 197 (SiMePh₂, 70), 193 (Si₂Me₄Ph, 73), 135 (SiMe₂Ph, 100), 105 (SiPh, 32), 73 (SiMe₃, 54).

(b) 5. 7 g (26 mmol) 9 was brominated with 12.3 g (100 mmol) CH₃COBr and 28 g (105 mmol) AlBr₃ in the same manner as described above for the preparation of 4. Yield 5 g (12.5 mmol) 5, b.p. $95 \degree$ C/0.6 kPa.

5. GC MS: 400 (M⁺, 2), 385 (Si₃Me₄Br₃, 0.5), 319 (Si₃Me₅Br₂, 1.5), 276 (Si₂Me₄Br₂, 1), 261 (Si₂Me₃Br₂, 11), 197 (Si₂Me₄Br, 32), 182 (Si₂Me₃Br, 73), 139 (SiMe₂Br, 32), 109 (18), 73 (SiMe₃, 100).

3.1.5. Bromination of tris-(trimethylsilyl)-methylsilane to **6a–c**

1.5 g (5.7 mmol) SiMe(SiMe₃)₃ was brominated once with 2.9 g (24 mmol) CH₃COBr and 6.4 g (24 mmol) AlBr₃ and in a second experiment with 1.5 g (12.5 mmol) CH₃COBr and 3.5 g (12.5 mmol) AlBr₃. The first yielded 1.5 g (3.3 mmol) 6c and the second 1.5 g of a mixture of 58 mol% 6b, 28 mol% 6a and 14 mol% 6c after working up in the same way as already described.

6a. GC MS: 328 (M⁺, 0.5), 313 (Si₄Me₈Br, 8), 255 (Si₃Me₆Br, 7), 240 (Si₃Me₅Br, 3), 189 (Si₃Me₇, 6), 174 (Si₃Me₆, 100), 159 (Si₃Me₅, 30), 131 (Si₂Me₅, 33), 73 (SiMe₃, 85).

6b. GC MS: 392 (M⁺, 0.1), 377 (Si₄Me₇Br₂, 4), 319 (Si₃Me₅Br₂, 2), 313 (Si₄Me₈Br, 1), 304 (Si₃Me₄Br₂,

0.5), 269 (Si₃Me₇Br, 1), 255 (Si₃Me₆Br, 27), 240 (Si₃Me₅Br, 75), 197 (Si₂Me₄, 7), 139 (SiMe₂Br, 10), 131 (Si₂Me₅, 45), 116 (Si₂Me₄, 29), 73 (SiMe₃, 100).

6c. GC MS: 443 (Si₄Me₆Br₃, 2), 377 (Si₄Me₇Br₂, 3), 319 (Si₃Me₅Br₂, 65), 240 (Si₃Me₅Br, 28), 197 (Si₂Me₄Br, 20), 137 (SiMe₂Br, 19), 131 (Si₂Me₅, 58), 116 (Si₂Me₄, 23), 73 (SiMe₃, 100).

3.1.6. Tris-(dibromomethylsilyl)-methylsilane (7)

(a) $SiMe(SiH_2Me)_3$ (12). 5 g (13 mmol) SiMe(SiCl₂-Me)₃ was added dropwise to a solution of 1.5 g (40 mmol) LiAlH₄ in 50 ml dried Et₂O. After stirring for 2 h the mixture was carefully hydrolyzed with 50 ml diluted H₂SO₄ at 0 °C. The organic layer was separated and dried over anhydrous CaCl₂. The ether was removed in vacuum giving a residue of 1.5 g (8.4 mmol) pure 12.

12. GC MS: 178 (M⁺, 5), 163 (Si₄Me₃H₆, 4), 132 (Si₃Me₃H₃, 100), 115 (Si₃Me₂H, 8), 101 (Si₂Me₃, 15), 86 (Si₂Me₂, 30), 73 (SiMe₃, 18), 69 (22), 59 (SiMe₃H, 19), 45 (SiMeH₂, 16), 43 (SiMe, 22).

(b) 7. 1 g (5.6 mmol) 12 was diluted with 3 ml n-octane, 10 g (39.5 mmol) CHBr₃ was added and the mixture was heated up to 120 °C for 72 h. At this point a ²⁹Si NMR spectrum showed a composition of 73 mol% 7 and 27 mol% SiMe(SiBr₂Me)₂(SiHBrMe). Further heating of the mixture and removal of octane, formed CH₂Br₂ and residual CHBr₃ in vacuum led to 3.3 g (5 mmol) pure 7.

3.1.7. Bromination of tetrakis-(trimethylsilyl)-silan to **8a–d**

Starting from Si(SiMe₃)₄, bromination with CH₃-COBr and AlBr₃ in the described manner yielded pure 8d (molar ratio silane:CH₃COBr:AlBr₃ 1:5:5) as colorless crystals or a mixture of 2 mol% 8a, 34 mol% 8b, 54 mol% 8c and 10 mol% 8d (molar ratio silane:CH₃COBr:AlBr₃ 1:2.5:2.5) as a partially crystallized product.

8a. GC MS: 371 ($Si_5Me_{10}Br$, 13), 313 (Si_4Me_8Br , 4), 255 (Si_3Me_6Br , 2), 232 (Si_4Me_8 , 100), 217 (Si_4Me_7 , 3), 173 (13), 158 (22), 131 (Si_2Me_5 , 16), 99 (Si_3Me , 11), 73 ($SiMe_3$, 90).

8b. GC MS: 435 (Si₅Me₉Br₂, 10), 371 (Si₅Me₁₀Br, 1), 362 (Si₄Me₆Br₂, 3), 313 (Si₄Me₈Br, 9), 298 (Si₄Me₇Br, 100), 283 (Si₄Me₆Br, 3), 255 (Si₃Me₆Br, 13), 174 (Si₃Me₆, 17), 159 (Si₃Me₅, 15), 144 (Si₃Me₄, 22), 131 (Si₂Me₅, 23), 73 (SiMe₃, 88).

8c. GC MS: 501 (Si₅Me₈Br₃, 5), 435 (Si₅Me₉Br₂, 2), 399 (Si₄Me₃Br₃, 1), 377 (Si₄Me₇Br₂, 14), 362 (Si₄Me₆Br₂, 100), 319 (Si₃Me₅Br₂, 4), 298 (Si₄Me₇Br, 3), 255 (Si₃Me₆Br, 26), 240 (Si₃Me₅Br, 8), 197 (Si₂Me₄Br, 6), 174 (Si₃Me₆, 39), 159 (Si₃Me₅, 7), 139 (SiMe₂Br, 13), 131 (Si₂Me₅, 20), 116 (Si₂Me₄, 15), 73 (SiMe₃, 90).

8d. GC MS: 580 (M^+ , 0.1), 565 (Si₅Me₇Bi₄, 1), 501

(Si₅Me₈Br₃, 2), 443 (Si₄Me₆Br₃, 48), 377 (Si₄Me₇Br₂, 2), 362 (Si₄Me₆Br₂, 24), 319 (Si₃Me₅Br₂, 13), 304 (Si₃Me₄Br₂, 14), 289 (Si₃Me₃Br₂, 1), 255 (Si₃Me₆Br, 24), 240 (Si₃Me₅Br, 3), 197 (Si₂Me₄Br, 11), 174 (Si₃Me₆, 11), 139 (SiMe₂Br, 23), 131 (Si₂Me₅, 20), 116 (Si₂Me₄, 26), 73 (SiMe₃, 100).

Hydrogenation of **8a-d** with excess LiAlH₄ in Et₂O and working up as described above for the hydrogenation of SiMe(SiCl₂Me)₃ led to the completely hydrogenated silanes Si(SiHMe₂)_i(SiMe₃)_{4-i}, i = 1, 2, 3, 4 (13a-d) as colorless liquids. 13d was already known [17].

13a. GC MS: 306 (M⁺, 1.5), 291 (Si₅Me₁₀H, 3), 232 (Si₄Me₈, 88), 217 (Si₄Me₇, 25), 173 (Si₄Me₄H, 13), 158 (Si₄Me₃H, 25), 144 (Si₃Me₄, 20), 129 (Si₃Me₃, 9), 73 (SiMe₃, 100), 59 (SiMe₂H, 20).

13b. GC MS: 292 (M⁺, 1), 277 (Si₅Me₉H₂, 4), 232 (Si₄Me₈, 18), 218 (Si₄Me₇H, 75), 203 (Si₄Me₆H, 17), 173 (Si₄Me₄H, 8), 159 (Si₃Me₅, 22), 144 (Si₃Me₄, 83), 129 (Si₃Me₃, 15), 73 (SiMe₃, 100), 59 (SiMe₂H, 26).

13c. GC MS: 278 (M⁺, 1), 263 (Si₅Me₈H₃, 3), 218 (Si₄Me₇H, 62), 204 (Si₄Me₆H₂, 72), 189 (Si₄Me₅H₂, 15), 159 (Si₃Me₅, 12), 157 (Si₄Me₃, 11), 144 (Si₃Me₄, 74), 130 (Si₃Me₃H, 26), 73 (SiMe₃, 100), 59 (SiMe₂H, 40).

13d. GC MS: 264 (M⁺, 0.5), 249 (Si₅Me₇H₄, 2), 204 (Si₄Me₆H₂, 100), 189 (Si₄Me₅H₂, 12), 175 (Si₃Me₆H, 7), 159 (Si₃Me₅, 8), 157 (Si₄Me₃, 8), 144 (Si₃Me₄, 80), 130 (Si₃Me₃H, 45), 73 (SiMe₃, 70), 59 (SiMe₂H, 54).

3.2. Hydrogenations with trialkylstannanes

The hydrogenations of 1-3 were carried out by adding Bu₃SnH and Ph₃MePI as catalyst. So the hydrogenated disilanes could easily be separated from the catalyst and the formed Bu₃SnBr by condensation of the silanes into a trap in vacuum at room temperature.

In all other cases (hydrogenation of 4-8) trimethylstannane was used together with Ph₃MePI. After conversion into Me₃SnBr (b.p. 163 °C) which has a relatively simple ¹H NMR spectrum, it can easily be removed from highly boiling methylbromohydrogenoligosilanes by condensation in vacuum at ambient temperatures.

Me₃SnH (b.p. 60 °C) was freshly prepared from Me₃SnCl and LiAlH₄ in diglyme. Bu₃SnH was commercially available from Merck.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft and the Fonds der chemischen Industrie for financial support.

References

- U. Pätzold, G. Roewer and U. Herzog, J. Organomet. Chem., 508 (1996) 147.
- [2] U. Herzog, G. Roewer and U. Pätzold, J. Organomet. Chem., 494 (1995) 143.
- [3] U. Herzog, E. Brendler and G. Roewer, J. Organomet. Chem., in press.
- [4] E. Hengge, C. Grogger, F. Uhlig, G. Roewer, U. Herzog and U. Pätzold, Monatsh. Chem., 126 (1995) 549.
- [5] U. Böhme, Freiberg University of Mining and Technology, unpublished results.
- [6] D. Kummer, A. Balkir and H. Köster, J. Organomet. Chem., 178 (1979) 29; D. Kummer, S.C. Chaudhry, W. Depmeier and G. Mattern, Chem. Ber., 123 (1990) 2241.
- [7] U. Herzog, R. Richter, E. Brendler and G. Roewer, J. Organomet. Chem., 507 (1996) 221.

- [8] U. Stolberg, Chem. Ber., 96 (1963) 2798.
- [9] M. Ishikawa, M. Kumada and H. Sakurai, J. Organomet. Chem., 23 (1970) 63.
- [10] H. Schmölzer and E. Hengge, Monatsh. Chem., 115 (1984) 1125.
- [11] K. Schenzel and K. Hassler, Spectrochim. Acta, 50A(1) (1994) 127.
- [12] G. Kollegger and K. Hassler, J. Organomet. Chem., 485 (1995) 233.
- [13] K.G. Sharp, P.A. Sutor, E.A. Williams, J.D. Cargioli, T. C. Farrar and K. Ishibitsu, J. Am. Chem. Soc., 98 (1976) 1977.
- [14] K. Hassler, E. Hengge, F. Schrank and M. Weidenbruch, Spectrochim. Acta, 47A (1991) 57.
- [15] U. Herzog and G. Roewer, in N. Auner and J. Weis (eds.), Organosilicon Chemistry III, VCH, Weinheim, in press.
- [16] W. Malisch, J. Organomet. Chem., 82 (1974) 185.
- [17] H. Gilman, J.M. Holmes and C.L. Smith, Chem. Ind., (1965) 848.